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I. ABSTRACT

We report on the work carrie out under the support of

USAFOSR Grant No. AFOSR-80-0083. . he thrust of this work was

the development of efficient and accurate finite element methods

for flow problems. Specific applications include periodic

acoustic problems, potential flow problems and incompressible

viscous flows. However, the theoretical analyses carried out

also have a direct bearing on the approximation of problems in

other areas, e.g., electromagnetics and elasticity. For the

particular fluids applications mentioned above, computer codes

implementing the algorithms have also been developed.

-*v* * *.* * - **. . . . . . . .. - . .
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II. DESCRIPTION OF WORK ACCOMPLISHED

A. Eigenvalue Problems

The first problem we consider is the energy stability of the

incompressible Navier-Stokes equations. This problem has the
,

following variational formulation: seek (u,,pv V S x

such that

(u D w - div w) =-v J Vu Vw

S div = 0

for all (w,E) e V x S. Here V and S are appropriately chosen

Hilbert spaces and D is the deformation tensor of a given flow.

It is easily shown (1] that if the largest eigenvalue V of the

problem (1) is smaller than the kinematic viscosity v of the

given flow, then the given flow is stable in the energy sense.

We note that (1) is a linear eigenvalue problem which determines

stability regions for arbitrary perturbations, i.e., not infinitesimal.

The problem (1) is, however, not easily solvable. We therefore wish

to solve the problem approximately. To this end we choose finite

dimensional subspaces Vh c V and Sh c S and require that (1)

hold for all e Vh . Sh. This leads to a linear generalized

algebraic eigenvalue problem of the form

01 -,1 (2)

h h

We choose the spaces Vh and Sh to be finite element spaces.

Under certain conditions on these spaces, which are necessary for

the stability of the approximate problem, we have been able to
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prove that the approximate eigenvalues vh converge to the exact

eigenvalues v at an optimal rate. In addition, two computer

codes have been written which use different finite element spaces

which satisfy the above mentioned conditions. The first uses a

triangulation of the type illustrated in the figure on the left

wherein the vector u is approximated by piecewise linear

polynomials in each triangle and the

Figure 1

scalar p is approximated in a well defined subspaces of piecewise

constant functions in each triangle. The second code uses the element

on the right which again uses piecewise linear vectors on triangles,

but now uses scalars which are constant throughout the quadrilateral..*
Our theory predicts that vh converges to v quadratically in the

grid spacing and, of course, this is verified by our computational

results. The codes developed take advantage of the structure and

sparsity of the algebraic problem (2).

Another physical problem considered is that of acoustic

eigenvalue problems such as those described by the equation

Acp = V in ( (3)

Again this eigenvalue problem can be given a variational charac-

terization. We seek (u,E,) V x - x 3 such that

I , : '; ;; "-' '-+' .. ,;- .. ..*-,+ .*.*.'. . . -+ + .. .- +- ' - . " ". " .i. -. .. - . -+? ?"" -"
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4 divu= fcX
* (4)

£ (q div v + v. u) =0
£2

for all (v,*) e V x S, where again V and S are suitable Hilbert

spaces. Approximations are defined as before. In this case we have

proved optimal error estimates for the eigenvalues X and eigen-

function pairs (u,cp) and have developed codes to compute these

eigenvalues and eigenfunction, again using the two elements described

in the figure above.

The variational problems (1) and (4) are special cases of the

abstract mathematical problem: seek (u,q,k) E V1 x S1 x C such that

a(u,v) + b l(v,) = Xc(uv)

(5)
b2 (u,#) = d(*,)

for all (v,4) E V2 x S2. Here a, bl, b2, c and d are sesqui-

linear forms defined on the appropriate Hilbert spaces. We have

been able to prove optimal error estimates for eigenvalue problems

of the type (5) for a variety of combinations of forms a, bl, etc.,

under reasonable hypothesis on these forms. For example, the cases

b1 = b2 with c or d = 0, b1 = b2 with both c and d # 0,

and bI b2 , all with a(u,v) coercive or weakly coercive have

been successfully analyzed and illustrative computer programs have

been implemented in each case. The various cases which have been con-

sidered describe a variety of physical examples including some

generalized non-self-adjoint acoustic eigenvalue problems, eigen-

value problems emanating from transmission line theory, etc.
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B. Inhomogeneous Navier-Stokes Equations

Finite element methods for stationary viscous incompressible

flows were considered. Specifically, we consider the problem of

finding a velocity field u and a pressure field p which satisfy

V-u = g in 12

vAu - u- Vu + Vp =f in Q (6)

= Hon F

2 3
where Q is a bounded region in IR or JR with boundary I,

and where g, f, and _ are given functions. Previous work [2]

on the topic considers the case g = 0 and _ = 0 only. The

case q # 0 is important since usually such flows are driven at

the boundaries, e.g., by inflows. Our work on this topic included

the following accomplishments:

a) Under natural hypothesis on f, g, and _, the existence

and uniqueness of weak solutions of (6) was proven. Adding

stability hypotheses on the finite element spaces, the existence

and uniqueness of approximate finite element solutions was also

displayed;

.b) Optimal error estimates for the finite element discretiza-

tion were derived;

c) The convergence behavior of iterative methods, i.e., the

Newton, chord and simple iteration methods, for the solution of the

discrete nonlinear algebraic equations resulting from the finite

element discretization were analyzed. In particular, it was shown

that the Newton method was quadratically convergent when one is

close enough to the exact solution of the discrete equations, and
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'4 it was also shown that a simple iteration scheme is globally con-

vergent whenever the solution of (6) is unique; and

d) Computer programs were written implementing some particular

choices of finite element spaces. These programs verified the

theoretical results and also served to illustrate the implementation

of the algorithms developed.
A crucial step in developing good algorithms for the approxi-

mation of the solution of (6) is choosing finite element spaces

which satisfy the stability hypothesis alluded to in (a) above.

We choose spaces V and Sh  in which to seek an approximation

uh and p h, respectively, to the solution of (1). Then the

stability hypothesis takes the form

Ithdiv v hdQ
.*sup D h YhUhIIo, Y#h Sh .

vl hEv h 1

where denotes the H -Sobolev norm. The crucial question

is whether or not

.h yh>Y 0 > 0
0

uniformly in h, i.e., y is independent of h. For some obvious
choices of Vh and shI YO = 0 and these are discarded. For

some other choices, such as bilinear velocities and constant

pressures, y # 0 once the "checkerboard" pressure mode is

h
removed. However, there is some evidence that Y depends on.

h, i.e. )h 0. This results in possibly bad pressure ap-

proximations which must be filtered in order to obtain useful

pressures. On the other hand, the velocity approximations are
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optimally accurate without any filtering. Computer programs imple-

menting a variety of low order elements have been developed. These

programs produce accurate velocity approximations.

C. Mixed Finite Element Methods for Potential Flows

This work involves the approximation of problems of the type

V u =F in D

u= V# in 0

(7)
u .n =f on r

=g on r

where r f r = r, the boundary of L, f, g and F are given func-
N D

tions, and u and are, for instance, an unknown velocity

field and potential field. The simple problem (7) is equivalent

to
.-.

A#= F in 11

*=g on r N  (8)

6-n f on r 0 .

However, we are interested in discretizing (7) directly, since in

more general settir :s, prc' ams of the type (7) may not always be

recast into a form -nilar to (8). Previous work t31 on finite
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element methods for the approximation to the solution of (7)

resulted in error estimates for the error u - uh , uh  being

the discrete solution, in the norm

UXI,1 = l0X1l 0 + Ildiv viio

where H" i0  denotes the L2-norm. No error estimates were

obtainable for which is physically of much greater

interest than estimates for IIu-uhll,. The thrust of our work was to

examine conditions under which optimally accurate approximations

in the norm H-40 are obtainable for the problem (7). The high-

lights of this work are the following:

(a) Optimally accurate approximations are obtainable whenever

the subspace V h and Sh in which we seek our approximate solution

h and *h, respectively, satisfy the inclusion property

S div(vh) and the decomposition property: every E Vh may

be written in the form

Sh h h
v = w + z

where

hSV .z =0

and

h ph whl 1< j~div whUl

where
.I
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f dn

I 1 1 sup

Again, bounding h by > %0 uniformly in h is crucial to

obtaining optimally accuate approximations;

(b) An example of a pair v and Sh  satisfying the above

properties was given; and

(c) Computation using the spaces of (b) were performed,

verifying the optimal theoretical results. Computations using

finite element spaces which violate the conditions of (a) were

also performed, and non-optimal or divergent approximations

resulted.

D. Problems with Inhomogeneous Essential Boundary Conditions

Often, in application, we encounter problems with inhomogeneous

boundary conditions. A simple example is provided by

-Au = f in 0

(9)

u = g on r

where r is the boundary of the region 0 c 3Rn. Such problems

present difficulties when finite element discretizations are con-

sidered, mainly because we cannot satisfy the boundary condition

u = g by functions in finite element spaces. We consider approxi-

mations of the solution of (9) wherein we first choose an approxi-

mation gh, to g, which belongs to the restriction of the finite

element space to the boundary. For example, g could be a
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boundary interpolant of g or an L (I)-projection of g. We

then discretize (a), with u = g replaced by g = gh by standard

finite element techniques. We derive optimal H1  and L2  error

estimate accounting for the differences between g and gh.

Also, we show that such methods are easily implemented. The

analyses and computer implementations were carried out for

second order elliptic boundary valve problems, e.g., such as (9,

and for the stationary Navier-Stokes equations.

E. Least Squares Finite Element Schemes

An important class of schemes which we have studied are least

squares finite element schemes. Based on past analyses and experi-

ences, we have developed least squares methods for a variety of

flow applications. One interesting application is in transonic

flows around harmonically oscillating wings. Such flows are

governed by mixed type equations, i.e., of mixed hyperbolic/

elliptic type. Assuming that the oscillations are small, one may

derive a set of linear equations for the perturbation flow. These

equations, which are analogous to the Helmholtz equations of

acoustics, are again of the mixed type. We have developed and

implemented a least squares finite element algorithm for the

approximation of such flows. The most important features of

this algorithm are its insensitivity to the type of the equation

and the frequency of the oscillatory motion, and to the use of

weighted inner products in order to accurately resolve singulari-

ties, e.g., at the leading edge.

. . - . . , , . .- , . . , . . . - . • . ' - .. , - .. . ' , . . , . . . , . . , . , , , . ' . -
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